AN EKELAND TYPE VARIATIONAL PRINCIPLE ON GAUGE SPACES WITH APPLICATIONS TO FIXED POINT THEORY, DROP THEORY AND COERCIVITY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Point Theorems and Ekeland Type Variational Principle with Applications

We introduce the notion of λ-spaces which is much weaker than cone metric spaces defined by Huang and X. Zhang 2007 . We establish some critical point theorems in the setting of λ-spaces and, in particular, in the setting of complete cone metric spaces. Our results generalize the critical point theorem proposed by Dancs et al. 1983 and the results given by Khanh and Quy 2010 to λ-spaces and con...

متن کامل

Vectorial Form of Ekeland-Type Variational Principle in Locally Convex Spaces and Its Applications

By using a Danes̆’ drop theorem in locally convex spaces we obtain a vectorial form of Ekelandtype variational principle in locally convex spaces. From this theorem, we derive some versions of vectorial Caristi-Kirk’s fixed-point theorem, Takahashi’s nonconvex minimization theorem, and Oettli-Théra’s theorem. Furthermore, we show that these results are equivalent to each other. Also, the existen...

متن کامل

Some results on coupled fixed point and fixed point theory in partially ordered probabilistic like (quasi) Menger spaces

In this paper, we define the concept of probabilistic like Menger (probabilistic like quasi Menger) space (briefly, PLM-space (PLqM-space)). We present some coupled fixed point and fixed point results for certain contraction type maps in partially order PLM-spaces (PLqM- spaces).

متن کامل

On a Generalized Critical Point Theory on Gauge Spaces and Applications to Elliptic Problems on Rn

In this paper, we introduce some aspects of a critical point theory for multivalued functions Φ : E → RN∪{∞} defined on E a complete gauge space and with closed graph. The existence of a critical point is established in presence of linking. Finally, we present applications of this theory to semilinear elliptic problems on RN .

متن کامل

The Lefschetz Principle , Fixed Point Theory , and Index Theory

This is a rough historical account of some uses of the Lefschetz Principle in fixed point theory and index theory. The Lefschetz Principle states that the alternating sum of the traces on cohomology (a global and rigid invariant) is equal to the alternating sum of the traces on the underlying cochain complex (a local and far less rigid invariant). The original Lefschetz Theorem for compact poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2011

ISSN: 1015-8634

DOI: 10.4134/bkms.2011.48.5.1023